Sample Problem—Calculating Logistic Growth

Example

A population is growing continuously. The carrying capacity of the environment is 1000 individuals and its maximum growth rate, r_{max} , is 0.50.

- (a) Determine the population growth rates based on a population size of 20, 200, 500, 900, 990, and 1000.
- (b) Describe the relationship between population size and growth rate.

Solution

(a)
$$\frac{dN}{dt} = r_{\text{max}} N \times \left[\frac{(K-N)}{K}\right]$$
. See **Table 3** for calculated growth rates.

r _{max}	Population size N	[<u>(K – N)</u>]	Population growth rate
0.50	20	<u>980</u> 1000	9.8
0.50	200	<u>800</u> 1000	80
0.50	500	<u>500</u> 1000	125
0.50	900	<u> 100 </u>	45
0.50	990	<u> 10 </u> 1000	4.95
0.50	1000	0	0

(b) When the population is small the population has a slow rate of growth. It increases as the population increases and then, as it approaches the carrying capacity, the growth rate declines.