Sample Problem—Calculating Exponential Growth

Example

A population of 2500 yeast cells in a culture tube is growing exponentially. If the intrinsic growth rate r is 0.030 per hour, calculate:

- (a) the initial instantaneous growth rate of the population
- (b) the time it will take for the population to double in size
- (c) calculate the size of the population after each of four doubling times.

Solution

(a) r = 0.030 per hour and N = 2500

$$\frac{dN}{dt} = rN$$

- $= 0.030 \times 2500$
- = 75 per hour

When the population size is 2500 the instantaneous population growth rate is 75 per hour.

(b)
$$r = 0.030$$

 $t_{\rm d} = \frac{0.69}{r}$
 $= \frac{0.69}{0.030}$
 $= 23$ hours

The yeast population will double in size every 23 hours.

(c) $t_d = 23$ hours, initial population size is 2500

Table 2

Doubling times	Time (hours)	Population size
0	0	2500
1	23	5000
2	46	10 000
3	69	20 000
4	92	40 000