Example

Each May, harp seals give birth on pack ice off the coast of Newfoundland. In a hypothetical scenario, an initial population of 2000 seals gives birth to 950 pups, and during the next 12 months, 150 seals die.
(a) Assuming that the population is growing geometrically, what will the harp seal population be in two years?
(b) Assuming the same geometric growth rate, calculate the population size after eight years.

Solution

(a) In year 1 , the population change $=950$ seals (births) -150 seals (deaths)

$$
=800 \text { seals }
$$

Initial population $N(0)=2000$ seals,
Population at end of year $1, N(1)=2000+950+150$
Geometric growth rate $(\lambda)=\frac{N(t+1)}{N(t)}=\frac{2800}{2000}=1.4$
Since the growth rate remains constant in geometric growth, the population size at the end of year 2 is as follows:

$$
\begin{aligned}
N(t+1) & =N(t) \lambda \\
N(2) & =2800 \times 1.4 \\
& =3920
\end{aligned}
$$

Therefore, after 2 years of geometric growth, the seal population would reach 3920. Figure 4 graphically illustrates this population growth.
(b) $N(0)=2000, \lambda=1.4, t=8$ years

$$
\begin{aligned}
N(8) & =N(0) \lambda^{8} \\
& =2000 \times(1.4)^{8} \\
& =2000 \times 14.76 \\
& =29520
\end{aligned}
$$

With the same growth rate the seal population will have reached 29520 at the end of 8 years.

Figure 4

